Чем полезен корень лопуха одуванчика и пырея

Владимир Викторович Чуб,
доктор биологических наук, профессор кафедры физиологии растений биологического факультета МГУ имени М. В. Ломоносова
«Потенциал. Химия. Биология. Медицина» № 11, 12, 2011; № 1, 2 2012

В последнее время в прессе и на телевидении часто обсуждают вопросы, связанные с генетически модифицированными растениями и потенциальным риском употребления продуктов питания, изготовленных из них. К сожалению, в таких дискуссиях часто побеждают эмоции, а не научная логика. Как результат в обществе возникает настороженное отношение к генетически модифицированным растениям и даже своеобразный «экологический терроризм». Когда в конце 1990-х из Германии в Юго-Восточную Азию хотели отправить партию генетически модифицированного риса, «зелёные» пошли на захват самолёта (!) и уничтожили всю партию семян. Прошлым летом в Австралии на территорию одного из научных центров проникли те же «зелёные террористы» и уничтожили посевы трансгенной пшеницы, над которыми исследователи работали около 10 лет. Эта акция отбросила назад исследования пшеницы и нанесла научному центру убытки, которые исчисляются миллионами долларов.

Это, конечно же, крайние проявления. Но каждого современного человека беспокоит вопрос: нужно ли бояться генетически модифицированных растений? Что они несут миру: пользу или вред? Однозначного ответа не существует. И с каждым конкретным случаем применения ГМО нужно разбираться отдельно.

Насекомые-вредители при вспышках численности могут уничтожать существенную часть урожая (если не весь урожай). Для борьбы с ними применяют довольно агрессивные вещества — пестициды (от лат. pestis — вредоносный бич, зараза и caedo — убивать). Пестициды уничтожают и вредных, и полезных насекомых (например пчёл, шмелей, жужелиц), оказывают влияние на почвенных обитателей, а при попадании в водоёмы пестициды могут вызвать гибель рыб. Применение пестицидов опасно в первую очередь для людей, работающих в сельском хозяйстве: именно они готовят растворы, проводят опрыскивания, работают в поле, пока пестицид продолжает действовать. К нам на стол попадает лишь ничтожная часть пестицидов, которые по большей части уже разложились. Избавиться от остатков пестицидов можно, тщательно вымыв овощи и фрукты или очистив кожицу.

Отказаться от применения пестицидов пока ещё нельзя: тогда размножатся вредители и человечество останется без урожая. А нельзя ли сделать культурные растения несъедобными для насекомых?

Здесь на помощь приходит генная инженерия растений. Насекомые, как и любые другие живые существа, болеют. Одно из заболеваний вызывает бактерия тюрингская палочка (Bacillus thuringiensis). Она выделяет белок-токсин, нарушающий пищеварение у насекомых (но не у теплокровных животных!). Этот белок обозначают BT-токсин (от первых букв латинского названия тюрингской палочки). Дальше необходимо выделить ген, отвечающий за синтез ВТ-токсина, включить его в состав искусственного Т-района ДНК, размножить плазмиду в кишечной палочке, дальше перенести плазмиду в агробактерию с плазмидой-хелпером (об использовании агробактерий для генетической модификации растений — см. «Потенциал» №11). Т-район из агробактерии внедрится в геном растения (например, хлопчатника). На искусственной среде с антибиотиками можно отобрать трансформированные клетки и получить из них генетически модифицированные растения (рис. 6). Теперь в хлопчатнике будет синтезироваться ВТ-токсин, и он станет устойчивым к вредителям.

Вредители хлопчатника — актуальная проблема для тропических регионов. Так, вспышки численности хлопкового долгоносика в XIX–XX вв. были одной из причин экономических спадов в США. С 1996 года на поля внедряется генетически модифицированный хлопчатник, устойчивый к насекомым (в частности — к хлопковому долгоносику). В Индии — одной из лидирующих стран-производителей хлопка — на сегодня около 90% площадей заняты генетически модифицированным хлопком. Так что 9 шансов из 10, что вы уже носите «генетически модифицированные» джинсы! Как-то об этом в дискуссиях по ГМО не упоминают.

Заманчиво получить не только технические, но и пищевые растения, устойчивые к вредителям (например, картофель, устойчивый к колорадскому жуку). Это позволит фермерам существенно сократить расходы на обработку полей пестицидами и повысит урожай. Для того чтобы получить больше прибыли, ГМО, безусловно, необходимы. В нашей стране уже есть официальное разрешение на использование 4 сортов картофеля, устойчивого к колорадскому жуку: два сорта «наши», и два — иностранного происхождения. Но действительно ли такой картофель безопасен?

Появление в пище любого нового белка (например, ВТ-токсина) у чувствительных людей может вызывать аллергию, снижение общего иммунитета к заболеваниям и другие реакции. Но этот эффект возникает при любом изменении традиционного рациона. Например, все те же явления возникали просто при «внедрении» соевого белка: для европейцев он оказался потенциальным аллергеном, снижал иммунитет. То же самое будет с людьми, переезжающими на новое место, резко отличающееся по традициям питания. Так, для коренных народов Крайнего Севера опасной может оказаться молочная диета или питание обычным (заметим — нисколько не модифицированным!) картофелем. Русские бобы (Vicia faba), которые традиционно использовали у нас в стране как овощ, ядовиты для жителей Средиземноморья и т. д. Всё это не означает, что нужно повсеместно бороться с употреблением сои, молока, картофеля или бобов, просто необходимо учитывать индивидуальную реакцию.

Таким образом, при внедрении генетически модифицированных пищевых растений часть людей окажется к ним довольно чувствительной, но другие так или иначе приспособятся. Но чувствительные люди должны точно знать, какие продукты приготовлены с применением ГМО.

Полезно знать, что сегодня в Россию можно ввозить и использовать в пищевых технологиях 16 сортов и линий генетически модифицированных растений — в основном устойчивых к тем или иным вредителям. Это кукуруза, соя, картофель, сахарная свёкла, рис. От 30 до 40% продуктов на современном рынке уже содержат компоненты, полученные из ГМО. Парадоксально, что при этом выращивать генетически модифицированные растения у нас в стране не разрешается.

В утешение скажем, что в США — стране, которая выращивает 2/3 мирового урожая генетически модифицированных растений — до 80% продуктов содержат ГМО!

Поражение растений вирусами уменьшает урожай в среднем на 30% (рис. 7). Для некоторых культур цифры потерь ещё выше. Так, при заболевании ризоманией теряется 50–90% урожая сахарной свёклы. Корнеплод мельчает, образует многочисленные боковые корни, содержание сахара снижается. Это заболевание впервые было обнаружено в 1952 году в Северной Италии и оттуда «победным маршем» в 1970-х гг. распространилось во Францию, на Балканский полуостров, а в последние годы — в южные регионы свеклосеяния нашей страны. Против ризомании не помогают ни химическая обработка, ни севооборот (вирус сохраняется в почвенных организмах не менее 10 лет!).

Ризомания — это всего лишь один пример. С развитием транспорта вирусы растений вместе с урожаем быстро перемещаются по планете, минуя таможенные барьеры и государственные границы.

Единственным эффективным способом борьбы со многими вирусными болезнями растения оказывается получение устойчивых генетически модифицированных растений. Для повышения устойчивости из генома вируса-возбудителя ризомании выделяют ген белка капсида. Если этот ген «заставить» работать в клетках сахарной свёклы, то резко повышается устойчивость к «ризомании».

Есть и другие проекты, связанные с повышением устойчивости к вирусам. Например, огурцы, дыни, арбузы, кабачки и тыква поражаются одним и тем же вирусом мозаики огурца. Кроме того, в круг хозяев входят томаты, салат-латук, морковь, сельдерей, многие декоративные и сорные растения. Бороться с вирусной инфекцией очень трудно. Вирус сохраняется на многолетних растениях-хозяевах и на остатках корневой системы в почве.

Как и в случае с ризоманией, против вируса мозаики огурца помогает образование белка его собственного капсида в растительных клетках. На сегодня получены устойчивые к вирусу трансгенные растения огурцов, кабачков и дыни.

Ведутся работы и по повышению устойчивости к другим вирусам сельскохозяйственных растений. Но пока ещё, за исключением сахарной свёклы, устойчивые генетически модифицированные растения мало распространены.

В развитых странах расходам на горюче-смазочные материалы все больше предпочитают «разориться» на разнообразные химикаты. Одна из важных статей расходов — вещества, уничтожающие сорняки (гербициды). Применение гербицидов позволяет лишний раз не гонять тяжёлую технику по полю, меньше нарушается структура почвы. Слой отмерших листьев создаёт своеобразную мульчу, которая уменьшает эрозию почвы и сберегает влагу. Сегодня разработаны гербициды, которые в течение 2–3 недель полностью разлагаются в почве микроорганизмами и практически не наносят вреда ни животным, обитающим в почве, ни насекомым-опылителям.

Однако у гербицидов сплошного действия есть существенный недостаток: они действуют не только на сорные, но и на культурные растения. Есть определённый успех в создании так называемых селективных гербицидов (таких, которые действуют не на все растения, а на какую-то группу). Например, есть гербициды против двудольных сорняков (см. в статье об ауксинах, «Потенциал» №7). Но при помощи селективных гербицидов невозможно уничтожить все сорняки. Например, останется пырей — злостный сорняк из семейства злаковых.

И тогда возникла идея: сделать культурные растения устойчивыми к гербицидам сплошного спектра действия! Благо, у бактерий есть гены, отвечающие за разрушение многих гербицидов. Достаточно просто пересадить их в культурные растения. Тогда вместо постоянных прополок и рыхления междурядий над полем можно распылить гербицид. Культурные растения выживут, а сорняки погибнут.

Именно такие технологии предлагают фирмы, производящие гербициды. Причём выбор трансгенных семян культурных растений зависит от того, какой гербицид фирма предлагает на рынке. Каждая фирма разрабатывает растения-ГМО, устойчивые к своему гербициду (но не к гербицидам конкурентов!). Ежегодно в мире на полевые испытания передают 3–3,5 тыс. новых образцов растений, устойчивых к гербицидам. Даже испытания устойчивых к насекомым растений отстают от этого показателя!

Устойчивость к гербицидам уже широко применяется при выращивании люцерны (кормовая культура), рапса (масличное растение), льна, хлопчатника, кукурузы, риса, пшеницы, сахарной свёклы, сои.

Традиционный вопрос: опасно или безопасно выращивание таких растений? Технические культуры (хлопок, лён), как правило, не обсуждают: их продукты человек не использует в пищу. Конечно, в генетически модифицированных растениях появляются новые белки, которых прежде не было в пище человека, со всеми вытекающими отсюда следствиями (см. выше). Но есть ещё одна скрытая опасность. Дело в том, что применяемый в сельском хозяйстве гербицид — это не химически чистое вещество, а некоторая техническая смесь. В неё могут добавлять детергенты (для улучшения смачивания листьев), органические растворители, промышленные колоранты и другие вещества. Если содержание гербицида в конечном продукте строго контролируют, то за содержанием вспомогательных веществ, как правило, следят плохо. Если содержание гербицида будет сведено к минимуму, то о содержании вспомогательных веществ остаётся только догадываться. Эти вещества могут попадать также в растительное масло, крахмал и другие продукты. В будущем предстоит разрабатывать нормативы на содержание этих «неожиданных» примесей в конечных продуктах.

Успехи в создании генетически модифицированных растений, устойчивых к вредителям и гербицидам, породили ещё одно сомнение: а вдруг сорняки каким-то образом «завладеют» генами, встроенными в геном культурных растений, и станут устойчивыми ко всему? Тогда появится «суперсорняк», который будет невозможно истребить ни с помощью гербицидов, ни с помощью насекомых-вредителей!

Такой взгляд по меньшей мере наивен. Как мы уже говорили, фирмы-производители гербицидов создают растения, устойчивые к производимому гербициду, но не к гербицидам конкурентов. Даже в случае приобретения одного из генов устойчивости можно использовать другие гербициды для борьбы с «суперсорняком». Устойчивость к насекомым ещё не определяет устойчивости к любым вредителям. Например, нематоды и клещи смогут по-прежнему поражать это растение.

Кроме того, остаётся неясным, каким образом сорняк приобретёт гены от культурного растения. Единственная возможность — если сорное растение является близким родственником культурному. Тогда возможно опыление пыльцой генетически модифицированного растения, и произойдёт «утечка генов». Это особенно актуально в районах древнего земледелия, где в дикой природе до сих пор обитают виды растений, близкие к культурным. Например, из трансгенного рапса с пыльцой новые гены могут переноситься на сурепку или дикие виды рода Капуста (Brassica).

Гораздо важнее, что посадки трансгенных растений вызывают «загрязнение» местного генетического материала. Так, кукуруза относится к ветроопыляемым растениям. Если один из фермеров посадил трансгенный сорт, а его сосед — обычный, возможно переопыление. Гены из генетически модифицированного растения могут «утечь» на соседнее поле.

Верно и обратное: растения-ГМО могут опыляться пыльцой обычных сортов, и тогда в следующих поколениях уменьшится доля генетически модифицированных растений. Это произошло, например, в Австралии при первых попытках внедрить генетически модифицированный хлопчатник: признак устойчивости к насекомым «пропал» из-за «разбавления» пыльцой обычных сортов с соседних полей. Пришлось более внимательно отнестись к семеноводству хлопчатника и внедрять устойчивые сорта ещё раз.

По материалам: elementy.ru